Tổng quát hóa Dãy Fibonacci

Mở rộng cho các số âm

Dùng Fn-2 = Fn - Fn-1, có thể mở rộng các số Fibonacci cho các chỉ số nguyên âm. Khi đó ta có:... -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8,... và F-n = -(-1)nFn.

Không gian vectơ

Thuật ngữ dãy Fibonacci cũng được dùng cho các hàm g từ tập các số nguyên tới một trường F thoả mãn g(n+2) = g(n) + g(n+1). Các hàm này có thể biểu diễn dưới dạng

g(n) = F(n)g(1) + F(n-1)g(0),

do vậy các dãy Fibonacci hình thành một không gian vectơ với hàm F(n) và F(n-1) là một cơ sở.

Tổng quát hơn, giá trị của g có thể lấy trong một nhóm abel (xem như một z-module). Khi đó dãy Fibonacci là một Z-module 2 chiều.

Các dãy số nguyên tương tự

Các số Lucas

Đặc biệt, dãy Fibonacci L với L(1) = 1 và L(2) = 3 được gọi là số Lucas, theo tên của Edouard Lucas. Dãy Lucas đã được Leonhard Euler đề cập đến năm 1748, trong Nhập môn giải tích vô hạn (Introductio in Analysin Infinitorum). Về ý nghĩa, các sô Lucas L(n) là luỹ thừa bậc n của tỷ lệ vàng

( 1 2 ( 1 + 5 ) ) n = 1 2 ( L ( n ) + F ( n ) 5 ) . {\displaystyle \left({\frac {1}{2}}\left(1+{\sqrt {5}}\right)\right)^{n}={\frac {1}{2}}\left(L(n)+F(n){\sqrt {5}}\right).}

Các số Lucas quan hệ với các số Fibonacci theo hệ thức

L ( n ) = F ( n − 1 ) + F ( n + 1 ) . {\displaystyle L\left(n\right)=F\left(n-1\right)+F\left(n+1\right).\,}

Một tổng quát hoá của dãy Fibonacci là các dãy Lucas. Nó có thể định nghĩa như sau:

U(0) = 0U(1) = 1U(n + 2) = PU(n + 1) − QU(n)

trong đó dãy Fibonacci là trường hợp đặc biệt khi P = 1 và Q = −1. Một dạng khác của các dãy Lucas bắt đầu với V(0) = 2, V(1) = P. Các dãy này có ứng dụng trong lý thuyết số để kiểm tra tính nguyên tố.

Các dãy Padovan là tương tự với hệ thức truy hồi P(n) = P(n − 2) + P(n − 3).

Các số Tribonacci

Các số tribonacci tương tự các số Fibonacci, nhưng thay vì khởi động với hai phần tử, dãy này khởi động với ba phân tử và mỗi số tiếp theo bằng tổng của ba phần tử đứng trước. Sau đây là một số sô tribonacci A000073:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, …

Giá trị của hằng số tribonacci là tỷ số (the ratio toward which adjacent tribonacci numbers tend). Nó là nghiệm của đa thức x3 − x2 − x − 1, xấp xỉ 1.83929, và cũng thoả mãn phương trình x + x−3 = 2. Nó có vai trò quan trọng khi nghiên cứu khối snub.

Các số tribonacci cũng được cho bởi

T ( n ) = [ 3 b ( 1 3 ( a + + a − + 1 ) ) n b 2 − 2 b + 4 ] {\displaystyle T(n)=\left[3\,b{\frac {\left({\frac {1}{3}}\left(a_{+}+a_{-}+1\right)\right)^{n}}{b^{2}-2b+4}}\right]}

ở đây cặp dấu ngoặc vuông ngoài là ký hiệu của hàm phần nguyên

a ± = ( 19 ± 3 33 ) 1 / 3 {\displaystyle a_{\pm }=\left(19\pm 3{\sqrt {33}}\right)^{1/3}} b = ( 586 + 102 33 ) 1 / 3 {\displaystyle b=\left(586+102{\sqrt {33}}\right)^{1/3}}

(Simon Plouffe, 1993).

Các tổng quát hóa khác

Các đa thức Fibonacci là một tổng quát hoá khác của dãy Fibonacci.

Một dãy Fibonacci ngẫu nhiên có thể xác định bằng việc ném đồng xu cho mỗi n trong dãy và lấy F(n)=F(n−1)+F(n−2) nếu đồng xu sấp và lấy F(n)=F(n−1)−F(n−2) nếu đồng xu ngửa.

Có thể định nghĩa dãy "ngẫu nhiên Fibonacci" là dãy các số fn xác định theo đệ quy

f0 = 1, f1 = 1, and f n = { f n − 1 + f n − 2 , with probability 0.5 f n − 1 − f n − 2 , with probability 0.5 {\displaystyle f_{n}=\left\{{\begin{matrix}f_{n-1}+f_{n-2},&{\mbox{with probability 0.5}}\\f_{n-1}-f_{n-2},&{\mbox{with probability 0.5}}\end{matrix}}\right.}

Hầu chắc chắn rằng căn bậc n của trị tuyệt đối của số hạng thứ n hội tụ về một hằng số khi n tăng vô hạn.

| f n | n → 1.13198824 …  as  n → ∞ . {\displaystyle {\sqrt[{n}]{|f_{n}|}}\to 1.13198824\dots {\mbox{ as }}n\to \infty .}